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Abstract 

 

Allan and Hadamard variances (AHVs) generated from data consisting of purely random 

noise are well-known as mean square measures of M
th

 order random stability (MORS) over the 

difference interval. When data contain deterministic drift (intrinsic aging plus environmentally 

induced temporal changes) as well as noise, however, it is also well known that AHVs can be 

biased measures of MORS. In such cases, one generally minimizes this bias by “removing” the 

drift from the data in question using auxiliary data fitting methods and then generating the 

AHV using the drift-removed residuals. This paper investigates the nature of one aspect of the 

residual AHV bias that remains after such drift-removal: kernel or Kstat(f)-bias. This bias 

exhibits itself in the spectral integral representation of a drift-removed AHV as an alteration of 

the spectral kernel Kstat(f) that relates the AHV to S(f), the power spectral density of the random 

data component from the non-drift removed AHV. This Kstat(f)-bias occurs because a fitting 

process, by its very nature, removes some of the noise along with the drift in the fit residuals, 

especially when negative power law noise is present. In this paper, charts of Kstat(f)-bias are 

generated as a function of /T for various AHV statistics (overlapping, total, and modified), 

various drift-removal methods (Greenhall, various polynomial order least squares fits, and 

environmental drift removal), and various power law noise processes. Selected drift-removed 

Kstat(f) charts are also examined to provide intuitive insight into why drift-removal Kstat(f)-bias 

behaves as it does. To aid in the generation of the numerous drift-removed bias charts in this 

paper, an efficient numerical technique is introduced for numerically computing drift-removed 

Kstat(f) directly in the time-domain from simple t-domain definitions of AHV statistics and drift-

removal methods. This technique avoids the need for computationally intensive phase 

randomization of a t-domain input in order to eliminate errors that occur when the t-domain 

input is not wide-sense stationary. Finally, the paper demonstrates two important results when 

higher-order negative power law noise is present: (a) that noise whitening (increasing the order 

of a polynomial drift-removal fit until the data residuals appear uncorrelated) greatly increases 

the Kstat(f)-bias in drift-removed AHVs and leads to misleadingly-low estimates of the MORS, 

and (b) that the removal of temporally complex environmental drift can also generate 

significant Kstat(f)-bias. 

 

INTRODUCTION 

ALLAN AND HADAMARD VARIANCES (AHVS) 

Allan and Hadamard Variances (AHVs) can be written as mean square (MS) averages of the M
th
 order -

measure 
M

()x(t) for M = 2 and M = 3 respectively [1]. Here, 
M

()x(t) is the M
th
 application of  the 1

st
-

order forward-difference ()x(t) = x(t+) – x(t), where x(t) is the time error, and t is an error-free 

observation time. Figure 1 illustrates 
M

()x(tn) for M = 1 and M = 2, where x(tn) represents N uniformly-

spaced data samples of x(t) over a total observation time T = No, o is the sampling interval, and  is 
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assumed to be an integer multiple of o [1]. 

In this paper, y()
2
 is the fractional frequency error Allan variance, whether it is expressed in terms of y(t), 

the fractional frequency error or x(t), and x()
2
 = (2

/3)y()
2
 is the time error Allan variance, where y()

2
 

can be any statistic of the Allan variance, rather than just the modified variance [1].  When used alone, as 

in y()
2
 or x()

2
, these variances will indicate the theoretical variance, as in [1] 

 
2

2

12 )]()(2)([6)( nmnmnx txtxtx  

  E  (1) 

where E indicates an ensemble average [2]. Multiple-sample Allan variance statistics, such as overlapping, 

total, and modified statistics [1], are designated by Ov x()
2
, Tot x()

2
, Mod x()

2
, etc., or by 

unabbreviated prefixes. For example, the overlapping x()
2
 is given here by 

 
2

2

2
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  E  (2) 

In Equation 2, note that the E-averaged AHV form is used for multiple-sample statistics as well as 

theoretical ones, so that we can write any AHV statistic stat()
2
 in terms of the spectral integral [1, 3, 4]  

 )()()( stat
0

2

stat fSfKdf x

fh

  (3) 

Kstat(f) in Equation 3 is a spectral kernel that relates stat()
2
 to Sx(f), the double sideband power spectral 

density of x(t) [1]. An example of such an AHV kernel is Kstat(f) = (8/3)sin
4
(f), the kernel for the 

theoretical x()
2
 [1, 5]. Note that all kernels in this paper relate stat()

2
 to Sx(f), rather than to Sy(f). In 

Equation 3, fh is an infinitely sharp high-pass frequency cut-off used to approximate the effect of system 

filtering on the AHV [1]. This approximation is suitable for the purposes of this paper.  

The theoretical fractional frequency “Hadamard” [6] or Picinbono [7] variance is designated in the paper 

by Hy()
2
 = (62

)
-1E3

()x(t) [6]. Similarly, Hx()
2
 indicates the time error Hadamard variance given by 

Hx()
2
 = (32

/10)Hy()
2
. This makes Hx()

2
  equal to the standard variance of x(t) when x(t) consists of 

uncorrelated (white) noise. The term Hadamard is in quotes here, because the form of the “Hadamard” 

variance used here [6] is proportional to that introduced by Picinbono [7] and is not the same as the 

variance first introduced by Hadamard [8]. For more detail on the Hadamard variance form as used here 

see [6]. Again, Ov, Tot, or Mod (or their unabbreviated prefixes) in front of Hy()
2
 or Hx()

2
 indicate 

these statistics for the Hadamard variance. 
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Figure 1. -measures, random error, and 

deterministic drift. 
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Figure 2.  Noise highpass  (HP) filtering in the 

residuals from polynomial ULSF drift removal. 
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MS M
TH

 ORDER RANDOM STABILITY (MORS) AND AHVS 

In this paper, we define MS M
th
 order random stability (MORS) of a random noise variable xr(t) simply as 

a normalized version of E[
M

()xr(tn)]
2
, where xr(tn) is a zero-mean random process (see Figure 1) [2]. We 

also assume here that xr(tn) is wide-sense stationary (WSS ) [2]. One can generalize this definition [5], but 

we will not need this more general definition in this paper. Thus, in this paper, Allan and Hadamard 

variance statistics generated from xr(tn) are perfect unbiased measures of 2
nd

 and 3
rd

 order x(t)-MORS 

respectively.  

In Figure 1, we note that a typical data set x(tn) is composed of two different data components: the (true) 

random noise xr(tn) and the (true) deterministic drift xc(tn), which we define as intrinsic temporal aging plus 

environmentally induced temporal changes [9]. It is well-known that Allan variances are insensitive to 1
st
 

order x(t) polynomial drift and Hadamard variances are insensitive 2
nd

 order x(t) polynomial drift [5]. In 

such cases, AHVs generated from raw drift-containing data are unbiased measures of MORS. However, 

when data does not contain such drift, it is also well known that AHVs generated from raw x(tn) drift-

containing data will be biased as measures of MORS because of drift contamination [5]. That is, AHVs 

generated from such raw x(tn) data will not be ensemble-mean equivalent to those generated from purely 

random noise. Finally, we note that the term bias in this paper will refer to a multiplicative deviate bias, 

that is, the ratio of the square root of an E-averaged AHV statistic generated from the data under 

consideration to that generated from its true noise component alone (the true MORS).  

In such drift-sensitive situations, one generally attempts to minimize this bias by “removing” the drift with 

an auxiliary data fitting method (xa(tn) in Figure 1). Then the AHV is generated using the drift-removed 

residuals (xj(tn) in Figure 1) rather than the raw data. Examples of such auxiliary data fitting methods are 

 unweighted least square fits (ULSFs) [10] using polynomial fit model functions [3],  logarithmic 

models for crystal oscillators [13-14], or environmental data [9], 

 the Greenhall frequency drift estimator [11],  

  Kalman filters [12],  

 and when the functional form of the drift is unknown, noise whitening (increasing the order of a 

polynomial ULSF until the data residuals appear uncorrelated). 

 

It is known, however, that such drift removal methods are imperfect and leave a residual bias, especially in 

the presence of negative power law (neg-p) noise [3, 11]. This paper investigates the nature of this residual 

drift-removed AHV bias. It is finally noted that we will not address Kalman drift removal here, though this 

is an important subject in and of itself [4]. 

NOISE OR KERNEL RESIDUAL BIAS 

Residual drift-removal bias can be separated into two components: model error bias and noise or kernel 

bias [5]. Model error bias occurs when the model function used in the fit incorrectly models the 

functionality of the true drift over T. That is, there is no parameter adjustment for the fit model that allows 

the fit xa(tn) to exactly reproduce the true drift xc(t) over T. In this case, some of the drift remains in the 

residuals xj(tn) after the fit is performed and this contaminates the drift-removed AHV as a measure of 

MORS. If the drift model can reproduce xc(tn) for some parameter adjustment, the model is linear in the 

adjustable parameters, and the fitting process is well-behaved, all of the true drift xc(tn) will be removed in 

the residuals, regardless of effect of the noise in the data on xa(tn). This is because a parameter-linear fitting 

process obeys the Superposition Principal, and thus xa(tn) can be separated into a perfect noiseless solution 

and a noise-only solution [3]. For the remainder of this paper, we will assume that this model error bias is 

negligible and focus on the second bias component, noise or kernel bias. 
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Noise or kernel bias occurs because data-fitting methods, by their very nature, can’t completely separate 

drift from noise in a finite length data set [2-3, 10]. This is especially true when highly-correlated neg-p 

noise is present [3]. To understand this, we note that data-fitting methods are in reality filters that rely on 

the orthogonality or lack or correlation between the drift and noise in the N-dimensional space of the data 

to separate the drift from the noise [10]. Thus, noise will contaminate the fit solution to the extent that it is 

correlated with the drift in a data set [3, 10]. The consequence of this is that the drift-correlated portion of 

the noise is removed from the residuals, biasing the drift-removed AHV as a measure of MORS [5]. In the 

variance of the residuals, this noise removal can be expressed as a kernel Kres(f) that filters Sx(f) in a 

spectral integral similar to Equation 3 [3].  Figure 2 plots Kres(f) generated by M
th
 order polynomial ULSF 

drift removal for various orders [3]. Note that Kres(f) for M
th
 order polynomial ULSF drift removal acts like 

a 2M
th
 order highpass filter with a knee frequency on the order of 1/T [3]. 

For a drift-removed stat()
2
, Kres(f) modifies Kstat(f) from its form without drift removal to create bias. We 

will call this noise, kernel, or Kstat(f)-bias. The nature of this Kstat(f)-bias for various AHV statistics, drift 

removal methods, and power law Sx(f) [1] is the subject of this paper.  

AHV DRIFT-REMOVED KERNEL BIASES TO BE INVESTIGATED IN THE PAPER 

In the paper, we investigate Kstat(f)-bias as a function of /T for 

 Overlapping, total, and modified Allan variance statistics; 

 The overlapping Hadamard variance statistic; 

 Greenhall frequency drift removal; 

 2
nd

 and 6
th
 order polynomial ULSF phase drift removal; 

 Environmental frequency drift removal; 

 The integer (p) power law noise orders p = 0, -1, -2, -3 in Sx(f) = f
 p
. 

  

Also note that [1] 

 p = 0 is associated with white phase noise, 

 p = -1 is associated with flicker of phase noise,  

 p = -2 is associated with random walk of phase noise,  

 p = -3 is associated with flicker of frequency noise, and 

 p < 0 defines negative power law (neg-p) noise (integer neg-p noise if p is a negative integer). 

 

We further note that 6
th
 order polynomial drift removal is used here to represent the Kstat(f)-bias that would 

occur when noise whitening techniques are used to identify unknown temporally complex deterministic 

drift in data. In noise whitening, one increases the order of a polynomial fit until the residuals become 

uncorrelated. This based on the assumption that the true noise is sample-uncorrelated, which is of course 

not true for negative power law noise [3-4]. For temporally-complex drift, polynomial orders of greater 

than 3 are typically required to achieve such uncorrelated residuals, and one can show that 6
th
 order 

polynomial drift-removal Kstat(f)-bias is typical of orders greater than 3.  

AN EFFICIENT TECHNIQUE FOR NUMERCIALLY COMPUTING 

DRIFT-REMOVED KERNELS 

Once a drift-removed Kstat(f) is known, computing AHV kernel-bias for a given Sx(f) using Equation 3 is 

straightforward.  However, generating such Kstat(f) in the frequency domain, while theoretically possible, 
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can be mathematically cumbersome [3]. Since both AHV and drift-fitting definitions are simple to 

represent in the time-domain, a technique that generates f-domain drift-removed Kstat(f) using t-domain 

techniques is desirable.  

The principal behind t-domain generation of such drift-removed Kstat(f) is straightforward. Let us assume 

we have a wide-sense stationary (WSS) [2] ensemble of discrete t-domain data sets that has a discrete f-

domain PSD matrix equivalent to the continuous PSD Sx(f) = (f-fo) for 0 < fo < fh. Observing Equation 3, 

one can see that numerically computing stat()
2 

in the t-domain using this ensemble and t-domain 

definitions of the AHV and drift-removal fitting method in question yields the discrete equivalent of the 

desired drift-removed Kstat(f). 

To find such an ensemble, let us start with the simple real harmonic data set  

 x(tn) = 2cos(otn+) (4) 

where  is some arbitrary phase offset. (Note that AHV definitions assume x(t) and y(t) are real quantities 

[1].) We further note that Equation 4 has a discrete autocorrelation matrix equivalent to the continuous 

autocorrelation function 

 Rx(t+0.5, t-0.5) =  E
 
4cos(o(t+0.5+))cos(o(t-0.5+)) = 2cos(o(2t+2)) + 2cos(o) (5)  

which is not WSS, but is non-stationary (NS) [2]. The NS nature of Rx in Equation 5 is indicated by its 

extra t-dependent term 2cos(o(2t+2)) [2]. Because of this non-stationarity, a stat()
2
 computed using 

Equation 4 will deviate from the true WSS Kstat(fo) for the AHV in question (for both drift removed and 

non-drift removed cases). Figure 3 shows Kstat(f) for the non-drift removed Ov x()
2
 computed in the t-

domain from stat()
2
 using x(tn) = 2cos(tn) and 2cos(tn-/2) (or 2sin(tn)).  Here, the computed results 

are compared against Kstat(f) generated from its analytical formula labeled “Theoretical” [1, 3]. 

One way to correct this problem is to average such stat()
2
 over an ensemble of data sets with the phase 

variable  ranging from 0 to 2 (or its equivalent, to average over an ensemble with start times t0 varying 

over a full cosine period). Averaging over this ensemble causes the 1
st
 NS term in Equation 5 to become 

zero leaving only the 2
nd

 WSS term cos(o). When this ensemble is used, one finds that the averaged 

stat()
2
 is equal the true WSS Kstat(fo). However, such a complete -randomization is computationally 

intensive because of the large number of ensemble members involved. 
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Figure 3. Deviations from the theoretical (analytical) WSS Kstat(f) for the non-drift 

removed Ov x()
2
 generated in the t-domain using x(tn) = 2cos(tn) and 2sin(tn). 

To reduce the computational load, we note that a simple two-data-set ensemble with   = 0 and  = -/2 

will also average the first non-WSS term in Equation 5 to zero. This is equivalent to averaging stat()
2
 over 
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the two ensemble members x(tn) = 2cos(otn) and x(tn) = 2sin(otn). Using this ensemble, one can show 

that all non-drift removed AHV Kstat(f) are equal to their correct analytically computed theoretical 

counterparts (see Figure 11 as an example).  

A modification of this technique that can be used when the fit model and method are analytically well-

behaved is as follows: (a) set x(tn) to exp(jotn), (b) replace real squares in the t-domain definitions of the 

AHV in question with absolute value squares, and (c) use complex arithmetic in the computation of 

stat()
2
. This is equivalent to averaging over the real ensemble members 2cos(otn) and 2sin(otn) using 

real arithmetic. When using simulation tools that utilize complex notation, this modification requires less 

code and runs faster than the real method. Note, however, that this complex method cannot be used for 

generating drift-removed Kstat(f) when the drift-model contains functions such as Aln(Bt+1) (as in long-

term crystal oscillator drift models [13-14]) which are not analytically well-behaved (the log function has a 

complex branch cut). 

DRIFT-REMOVED AHV KERNEL-BIAS 

DRIFT-REMOVED ALLAN DEVIATE BIAS 

Modified Allan Deviate Bias. Figure 4(a) shows Greenhall drift-removed Mod x() or Mod y() bias 

(curves are the same) for r  0.1 [11] plotted versus /T. Shown are bias curves generated using the paper’s 

numerical technique for p = 0, -1, -2, and -3, for all possible  values, and for N = 1018 to 1036. Discrete 

bias points published by Greenhall in 1997 for N   [11] are also shown. The ability to compute such a 

large number of Kstat(f) and their associated bias curves demonstrates the efficiency of the paper’s 

numerical computation technique. 
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Figure 4. Greenhall drift-removed Mod x() and y() bias vs /T and Kstat(f) for Mod 

x()
2
. 

From Figure 4(a), one can see that the paper’s results are in agreement with those of Greenhall for p = -1, 

-2, and -3, but not for p = 0. This fact at first puzzled the author until N values from 1018 to 1036 were 

run. This showed that p = 0 bias at appreciable /T fluctuates dramatically as N changes by small amounts, 

as can be observed in Figure 4(a). These large fluctuations can be explained by observing the Figure 4(b) 

graph of Kstat(f) for Greenhall drift-removed Mod x()
2
 with /T = 0.332 and N = 1024. (Figure 4(b) also 

shows Mod x()
2
 Kstat(f) for 2

nd
 and 6

th
 order polynomial ULSF drift removal, which will be discussed 

later.) Note from the figure that the nodes and anti-nodes in the Greenhall drift-removed Kstat(f) at higher f 

vary quite a bit from those of the non-drift-removed Kstat(f). On generating similar graphs for various N, 

one observes these nodes and anti-nodes change dramatically as N changes. Thus, the bias changes so 

much with N in Figure 4(a), because the spectral stat()
2
 integral is sensitive to these higher f fluctuations 
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when integrating spectrally flat p = 0 Sx(f). On the other hand, neg-p Sx(f), which spectrally roll off, will 

have spectral stat()
2
 integrals that are less sensitive to these higher-f ripple fluctuations, and thus do not 

show such bias variations with N. Finally however, it is noted that that this N sensitivity for p = 0 bias, 

while interesting from a theoretical point of view, is somewhat moot, since neg-p noise usually dominates 

stat()
2
 for appreciable /T.  

Figures 5(a) and 5(b) show 2
nd

 order and 6
th
 order polynomial ULSF drift-removed Mod x() and Mod 

y() bias vs /T respectively. Again for p = 0, one can see that there is bias variation with N as there was 

for Greenhall removal.  For p = -2 and -3  noise, we also note that the bias for 2
nd

 order poly drift removal 

is comparable but slightly worse than that for Greenhall drift removal and, for 6
th
 order poly drift removal, 

that the bias is larger than those for the other drift removal methods. The 6
th
 order removal bias also 

becomes appreciable for much lower values of /T. This 6
th
 order polynomial ULSF drift removal bias is 

representative of what could occur if noise whitening were used to remove the drift. Finally, the paper’s 

results confirm Greenhall’s conclusions that his drift removal method generates the least Mod y() bias 

for higher neg-p orders [11]. 
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Figure 5. The 2

nd
 and 6

th
 order drift-removed Mod Allan bias vs /T. 

Total and Overlapping Allan Deviate Bias. Figure 6(a) shows the bias in the non-drift-removed total 

Allan deviate vs /T, where the bias here is defined as the ratio between the total Allan deviate and 

theoretical non-total Allan deviate. The fact that the non-drift-removed total Allan deviate has a small bias 

may be surprising to some, but this bias is generated by the data folding process used in the total statistic 

[1]. From Figure 6(b), which graphs Kstat(f) for the non-drift-removed Tot x() at its maximum /T (along 

with other kernels), one can explain the mechanics of the bias caused by this data folding process. In the 

folding process, the number N of data points is artificially extended by adding two order-reflected versions 

of the original data set on either side of the original measured data set [1]. The Allan (or Hadamard) 

statistic is then averaged over this extended data set. For appreciable /T, this data folding process has the 

effect of modulating the sample spacing relative to the original set of the individual M
th
 order differences in 

the statistic. One effect of this modulation is that the average sample spacing over the data set is smaller 

than the specified  at appreciable /T. From Figure 6(b), one can see this effect in the shift in position of 

the total Kstat(f) f
 4
 slope at low fT from that of the theoretical non-total Kstat(f). This generates some bias. 

Second at higher f, one can see from Figure 6(b) that this -modulation also fills in the nulls of the 

theoretical non-total Kstat(f), which generates more bias. Finally, note that the Tot x() bias for p = 0 noise 

exhibits fluctuations with N similar to those in Mod x() though smaller in size. 
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Figure 6. Non-drift-removed total Allan bias vs /T and total Kstat(f). 

 

Figure 7, Figure 8, and Figure 9 show Kstat(f)-bias vs /T for the total and overlapping Allan deviates with 

Greenhall, 2
nd

 order polynomial ULSF, and 6
th
 order polynomial ULSF drift removal. Here, for appreciable 

/T, we note that Greenhall drift removal also produces a lower bias than that for 2
nd

 order polynomial drift 

removal when p = -2 and -3.  
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Figure 7. Greenhall drift-removed total and overlapping Allan bias vs /T. 
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Figure 8. The 2

nd
 order polynomial drift-removed total and overlapping Allan bias vs /T. 

 

The Effects of Noise Whitening and Complex Aging and Environmental Drift Removal. From Figure 

5 and Figure 9, one can observe that 6
th
 order polynomial drift removal produces significantly more bias 
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and becomes appreciable at significantly lower values of /T than that for the other drift-removal methods. 

Also observe that the total deviate is not as effective in reducing 6
th
 order Kstat(f)-bias for p = -2 and -3 

noise as it is for the other drift-removal methods. Again, 6
th
 order polynomial removal is representative of 

the order one would need to whiten the data residuals for some unknown temporally complex deterministic 

drift. It is noted that polynomial orders greater than 3 produce similar bias results. In noise whitening, one 

increases the polynomial fit order until the data residuals xj(tn) appear uncorrelated. Thus, the noise 

whitening process adds the part of the noise that is correlated with the fit model to the deterministic drift in 

the fit solution (the Orthogonality Principle for ULSF residuals [10]). As one increases the absolute value 

of p, one can show that neg-p noise becomes more and more correlated with polynomial fit models [3-4], 

and the whitening process thus removes more and more of the noise from the data residuals. This leads to 

an increase in AHV Kstat(f)-bias. The p = -1 noise is a marginal case because of its weaker correlation 

properties [3-4]. Finally, this correlation also produces misleading deterministic drift estimates. It is known 

in the literature (but sometimes ignored in practice) that noise whitening or similar fitting methods are not 

valid when the error correlates with the fit model [2-4, 10]. The conundrum here for neg-p noise is that 

such correlation cannot be reduced by extending T (as is the case for more well-behaved correlated noise 

processes), because neg-p noise has an infinite correlation time [3-4]. 

Kstat(f)-bias effects can also occur when attempting to remove functionally complex aging, such as long-

term crystal oscillator frequency aging, with higher order polynomials. Direct modeling of crystal oscillator 

long-term frequency Aln(Bt+1) functional terms [13-14] has been investigated by the author. 

Unfortunately, this investigation was not completed in time for this paper, because of difficulties associated 

with the non-analytic nature of the Aln(Bt+1) function. Thus at this point, one can only surmise the bias 

impact of direct Aln(Bt+1) drift removal from the 6
th
 order polynomial results, which is representative of 

the polynomial order required to reduce model error in long-term crystal oscillator frequency aging 

removal when using a polynomial drift model. 
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Figure 9. The 6

th
 order polynomial drift-removed total and overlapping Allan bias vs /T. 

Removing temporally complex environmental signatures from data can also cause Kstat(f)-bias.  Figure 10 

shows the Kstat(f)-bias in such an environmentally drift-removed overlapping x()
2
 Kstat(f). Here, frequency 

drift due to the temperature profile shown was removed using a single parameter ULSF and the 

temperature signature. Note that the bias results here are similar to that in Figure 8 for 2
nd

 order polynomial 

removal. The author has found that other environmental signatures can generate quite different bias results, 

varying from no bias to extremely high bias, depending on the specifics of the temperature signature. 

However, this investigation is not been completed to the point that its results can be published here. 
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Figure 10. The effect of removing a temperature profile on the overlapping Allan deviate. 

Graphical Examination of Drift-Removed Allan of x Kernels. Figures 11-13 show x() Kstat(f) for the 

Allan variance statistics and drift removal methods we having been discussing. These are shown for 

various /T values and N = 1024. Also shown are non-drift-removed Kstat(f) computed both numerically 

and theoretically for comparison. Note that all the numerically computed and theoretical non-drift-removed 

Kstat(f) agree, which is another verification of the validity of the numerical technique.  

Figure 11 shows Kstat(f) statistics for  equal to one data sample o (/T = 0.001 for this N). Observe here 

that all non-drift and drift-removed Kstat(f) are equal for this , as is expected. Figure 12 shows these Kstat(f) 

for /T = 0.1. Observe here that the 6
th
 order polynomial drift-removed Kstat(f) already have significant 

deviations at low f, while the other drift-removed Kstat(f) show minimal deviations at low f from those of 

the non-drift-removed Kstat(f). This shows why Kstat(f)-bias for p = -2 and -3 noise with 6
th
 order polynomial 

drift removal starts to increase at lower /T values than that for the other drift-removal methods. These 

early deviations for 6
th
 order polynomial drift-removal are due to its sharper data-residual highpass filtering 

and higher transition frequency as compared to lower-order polynomial drift removal (see Figure 2).  

Figure 13 shows the Kstat(f) for /T at their maximum possible values for each statistic. Observe here that 

all drift-removed Kstat(f) show significant deviations at low f. This explains the significant bias at these /T 

for all drift-removal methods. Finally, note that low-f deviations in Greenhall and 2
nd

 order polynomial 

drift-removed Kstat(f) are significantly less for the total statistic than those for the other statistics. This 

explains the lower drift-removed bias for p = -2 and -3 noise in the total statistic. 
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Figure 11. Drift-removed Mod, total, and overlapping Allan kernels for /T =0.001 (1-

sample spacing). 
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Figure 12. Drift-removed Mod, total, and overlapping Allan kernels for /T = 0.1. 
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Figure 13. Drift-removed Mod, total, and overlapping Allan kernels for maximum /T. 

 

HADAMARD DEVIATE BIAS 

Figure 14(a) shows 6
th
 order polynomial drift-removed Kstat(f)-bias for the overlapping Hy() (or Hx()) 

versus /T, and Figure 14(b) shows Kstat(f) for this statistic at its maximum /T for various drift-removal 

methods and no drift removal. Note in Figure 14(b) that 2
nd

 order drift Greenhall and 2
nd

 order polynomial 

ULSF drift-removed Kstat(f) are identical to the non-drift-removed Kstat(f) as expected, because the 

Hadamard deviate is frequency-drift insensitive [5-6]. Finally in Figure 14(a), note that there is significant 

6
th
 order polynomial drift-removal bias for p = -2 and -3 noise that starts at relatively low values of /T, 

similar to that in Allan statistics. This also implies that temporally complex drift removal or noise 

whitening can cause significant bias in Hadamard deviates for appreciable values of /T as well as Allan 

deviates. 
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Figure 14. The 6

th
 order poly drift-removed overlapping Hadamard bias vs /T and kernels 

for maximum /T. 

CONCLUSIONS 

In this paper, we have investigated the nature of drift-removal Kstat(f)-bias in various AHV statistics. In 

doing this, we have introduced a computationally efficient technique for generating drift-removed AHV 

Kstat(f) for p = -2 and -3 Sx(f). In the paper, we have shown that  

 the Greenhall drift-removed total Allan deviate has significantly lower bias as a measure of M
th
 

order random stability than that for the overlapping and modified Allan deviates, and 

  the total Allan deviate has significantly less bias at appreciable /T than that of these other Allan 

statistics for all drift removal methods. 

 

We have also shown that 

 at appreciable /T, white (p = 0) noise bias for Mod y() can vary widely with detailed N values at 

large , and 

 higher-order polynomial drift removal generates higher Kstat(f)-bias for p = -2 and -3 Sx(f) than 

lower-order drift removal. 

 

A consequence of the above bullet is that 

 noise whitening typically will generate a large Kstat(f)-bias when p = -2 and -3 noise is present, and 

that  

 noise whitening cannot be reliably used to remove unknown deterministic drift when such noise is 

present. 

 

We have finally shown that 

 environmental drift removal also can cause significant Kstat(f)-bias when p = -2 and -3 noise is 

present.   
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